Development of an active scintillating target for fission studies

J. Aupiais, G. Bélier
CEA, DAM, DIF, F-91297 Arpajon France
Fast neutron induced reactions are important for future nuclear plant generations, since most of the retained solutions are fast reactors. In this context fast neutron induced fission is of prime importance and one is faced to the lack of data together with incomplete understanding of the process.
Need for a new \((n,2n)\) reaction on \(^{239}\text{Pu}\)

- Passive target
 - Fission to be subtracted
 - High uncertainties

- Indirect measurement \((n, xn\gamma)\) with GEANIE/WNR
 - Model dependent
Count rates

→ Need for a very efficient fission veto
The neutron long counter CARMEN

BC521: Gd loaded (0.5%) scintillator ~1 m³
Detection efficiency: 85% for 252Cf SF neutrons

Prompt peak $\gamma,n \rightarrow$ trigger

$\rightarrow \Sigma E_\gamma$

\rightarrow Stockastic captures $\rightarrow P_v$

Capture time probability distribution

Log(E) vs Capture time (μs)
Advantages

• «Ease» of fabrication.

• High mass concentrations → moderated volumes.

• Pulse shape discrimination.

• No specific electronic noise associated with high masses.

• Good time resolution.
Fission veto
α detection efficiency

- Isotope dissolved in active volume → high efficiencies
- Losses due to wall effects.

5 MeV α range ~ 50 µm

Simulations → 0.34 %
(energy loss 300 keV)
Measurement → 0.320 ± 0.058%
W.J.Dowell NAS-NS-3116
The fission case

Two cumulative effects:
- Shorter ranges
- 2 Fragments \Rightarrow geometric effet

Light fragment range $\sim 30 \, \mu m$
Heavy fragment range $\sim 20 \, \mu m$

Losses estimated to 10^{-6}
Principle

Scintillator:
- Toluene C_7H_8 7.5 mol/L (solvent).
- Naphthalene C_{10}H_8 1.5 mol/L.
- Scintillator PBBO $\text{C}_{25}\text{H}_{17}\text{NO}$ 10^{-2} mol/L.
- **Extractant HDEHP** $\text{C}_{16}\text{H}_{35}\text{O}_4\text{P}$ 0.2 mol/L.

For physicists: $\text{C}_{0.47}\text{H}_{0.52}\text{O}_{0.0054}\text{P}_{0.0013}\text{N}_{0.00007}$
Minimization of quenching

Procedure:
• Solution of An (up to 10 mg)
 0.1 M HNO₃
• Add hydroxylamine chlorhydrate
 10⁻² M (for elimination of NO₂)
• Add 1.2 mL Alphaex™
• Shaking 5 min
• Centrifugation 2000 rpm 5 min
• Sampling 1 mL Alphaex™
• Counting
Commercially available: Ordela 8100AB NIM-3w

PERALS PhotoElectron-Rejecting Alpha Liquid-Scintillation

Pyrex tube
Pulse shape discrimination principle (PSD)

Response to fission unknown
First test with 252Cf

- α from 252Cf
- Spontaneous fission
- β

Number of counts vs Channel number
Bi-dimensional spectrum
Homemade system

Culture tube

PM : burle 8850
Optimization of PSD threshold
Bi-dimensional spectrum
Energy non linearity

α peak 6.118 MeV

$TKE=188$ MeV

78 MeV

~ 30 MeV expected !!!!

β suppressed spectra
Light absorption against actinide mass
Natural uranium α spectra with the PERALS system

Scintillator volume 1 cm³

Energy Resolution ~200 keV

50 mg

20 mg

10 mg

238U 4198 keV

234U 4774 keV

50 μg

574 keV
Tests with natural uranium

Natural uranium
10 µg/cm³; 1 mg/cm³; 10 mg/cm³
+ 7 Bq de 252Cf
Tests with thorium: representative of every actinide

Natural thorium (& Pu)
10 µg/cm³; 1 mg/cm³; 10 mg/cm³
+ 7 Bq de 252Cf

232Th 10 µg/cm³

232Th 10 mg/cm³
Dedicated cell + avalanche photodiode

- Compacity
Open questions on the maximum attainable mass

1. Radiolyse aging for high specific activities \rightarrow isotope dependent

2. Quenching from chemical \rightarrow specific to each isotope

3. Pile-up.
Perspectives

- Fission studies: calorimetry, γ spectra, cross sections, P_γ
 1. Spontaneous fission – Bruyères le Châtel
 2. Neutron induced fission -- NFS 2012...
- Ultra-asymmetric fission: cluster disintegration 12C \rightarrow 34Si (probability about 10^{-11})
- (n,xn) reaction \rightarrow CARMEN -- NFS 2012 ...