Application of Delay Before Burst in Low Level Measurements of $^{237}\text{Np}/^{239}\text{Np}$ performed in a BGO provided LSC counter

J. Diodati, J. Fernandez
Autoridad Regulatoria Nuclear Argentina
^{237}Np in Actinides Separation

Chromatography
Partition

Extraction with Alkylphosphoric acid derivates in organic solvents

Anionic Exchange
^{237}Np in Actinides Separation

Most used tracers

Pu-236 or Pu-242
Am-243
U-232
Th-299
Np ???

Most common Precipitation with: Oxalate, Phospate

Most common measurement method: Alpha Spectrometry

Important variability in the results (from 76 to 90%) due to chemical separation, electrodeposition step or both
^{237}Np in Actinides Separation

- **Fe (OH)$_3$ (in ammonium) to pH=10**
- **^{239}Np Tracer Addition to the sample**
- **Disolution in HNO3 to final 2.5 M**
- **Ascorbic Acid to final 0.1M**
- **Sulfamic Acid to final 0.1M**
- **Chromatography Separation**
237Np in Actinides Separation

TEVA

U-TEVA

TRU -spec
237Np in Actinides Separation

1) 5ml 0.05M Ascorb. plus 0.05M sulfamic acid
2) 5ml 2.5M HNO3
3) 15ml 0.02M HNO3 0.02M HF

TEVA

Evaporation of the aq lyer and dissolution in 3 ml (weighed) of 2M HNO3

DISCARD

EVAP. TO DRYNESS AND DISSOLUTION IN 8M HNO3 5 ml

TTA – Pa-233 – Extr.
$^{237}\text{Np in Actinides Separation}$

Weight 2 g from the last dissolution in a plastic vial and mix with 15 ml of UG-AB

LSC with Alpha/Beta Discrimination

24 hs Gamma Measurement
^{239}Np TRACER PREPARATION

^{239}Np separation from ^{243}Am standard source

On a TEVA resin and weighing the final elution

Calibration of the resulting solution by Gamma Spec.

Storage of the ^{243}Am percolated

Addition of approximately 1 Bq of tracer to samples, by weight
Discriminator Set Up

Beta emitter: \(^{239}\text{Np}\) separated as previously described

Alpha emitter: \(^{237}\text{Np}\) separated as previously described just TEVA +TTA steps

INSTRUMENT SETTINGS (Perkin-Elmer TR-3180 supplied with BGO shield and a Perkin Elmer 2900/AB)

Normal Count Mode

Delay Before Burst: 75 nSec
Calibration Set Up

<table>
<thead>
<tr>
<th>TR-3180 DISCRIMINATOR SET: 183 nSec</th>
<th>TR-2900 DISCRIMINATOR SET: 138 nSec</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Alpha Spillover: 37.25%</td>
<td>% Alpha Spillover: 36.86%</td>
</tr>
<tr>
<td>%Beta Spillover: 37.47%</td>
<td>%Beta Spillover: 37.26%</td>
</tr>
</tbody>
</table>
Spectra obtained in the set up of the method

239Np in the TR-2900 A/B counter: NCM and DBB = 75 nsec

Beta channel

Alpha channel
Spectra obtained in the set up of the method

239Np in the TR-2900 A/B counter: **HSCM** and DBB = 75 nsec

Beta channel

HSCM effect

Slight decrease in counting

Alpha channel
Spectra obtained in the set up of the method

237Np in the TR-2900 A/B counter: NCM and DBB = 75 nsec

Reg1 = 0 - 252
Reg2 = 100-252
Reg3 = 100-180
Reg4 = 180-252
Spectra obtained in the set up of the method

237Np in the TR-2900 A/B counter: HSCM and DBB = 75 nsec

Reg1 = 0 - 252
Reg2 = 100-252
Reg3 = 180-252
Reg4 = 100-180
Influence of the DBB in the ratio β_α / β_T

$^{239}\text{Np TR-3180 : LLCM}$

(37 Bq in the vial)
Influence of the DBB (nsec) in the ratio $\beta_\alpha / \beta_T (^{239}N_\rho)$

<table>
<thead>
<tr>
<th>DBB</th>
<th>t-SIE</th>
<th>β_{5-300} cpm</th>
<th>$\alpha_{100-180}$ cpm</th>
<th>$\alpha_{180-252}$ cpm</th>
<th>$\alpha_{100-252} / \beta_{5-300}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>438.1</td>
<td>103.2</td>
<td>136.3</td>
<td>105.7</td>
<td>2.34</td>
</tr>
<tr>
<td>100</td>
<td>429.7</td>
<td>131.4</td>
<td>126.2</td>
<td>113.1</td>
<td>1.82</td>
</tr>
<tr>
<td>200</td>
<td>433.1</td>
<td>193.6</td>
<td>129.1</td>
<td>100.1</td>
<td>1.18</td>
</tr>
<tr>
<td>300</td>
<td>434.6</td>
<td>237.6</td>
<td>128.5</td>
<td>105.8</td>
<td>0.99</td>
</tr>
<tr>
<td>400</td>
<td>430.5</td>
<td>236.5</td>
<td>132.8</td>
<td>112.6</td>
<td>1.03</td>
</tr>
<tr>
<td>500</td>
<td>434.2</td>
<td>286.8</td>
<td>120.8</td>
<td>111.5</td>
<td>0.81</td>
</tr>
<tr>
<td>600</td>
<td>437.0</td>
<td>297.2</td>
<td>131.5</td>
<td>98.2</td>
<td>0.77</td>
</tr>
<tr>
<td>700</td>
<td>433.5</td>
<td>312.7</td>
<td>133.7</td>
<td>107.8</td>
<td>0.77</td>
</tr>
<tr>
<td>800</td>
<td>429.9</td>
<td>319.4</td>
<td>133.2</td>
<td>100.3</td>
<td>0.73</td>
</tr>
<tr>
<td>Average</td>
<td>429.9 +/- 2.8</td>
<td>130.23 +/- 4.7</td>
<td>106.1 +/- 5.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RATIO: $\alpha_{100-252} / \text{Gamma spect} = 236.3/2322 = 10.2\%$
Influence of the DBB (nsec) in the ratio $\alpha\beta / \alpha_T (^{237}N_p)$

Total count in the vial (NCM, DBB = 75 nSec, Wdw= 100-252, tSIE= 430.5) 1620 CPM as a reference for 100% in Eff.

<table>
<thead>
<tr>
<th>DBB (nSec)</th>
<th>t-SIE</th>
<th>CPM_β 100-252</th>
<th>CPM_α 100-252</th>
<th>% Spillover</th>
<th>Effα 100 -252</th>
<th>Eff ($\alpha+\beta$) 100-252</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>428.6</td>
<td>12.6</td>
<td>733.0</td>
<td>1.7</td>
<td>45.2</td>
<td>46.0</td>
</tr>
<tr>
<td>100</td>
<td>428.9</td>
<td>67</td>
<td>726.7</td>
<td>8.4</td>
<td>44.8</td>
<td>48.8</td>
</tr>
<tr>
<td>200</td>
<td>430.1</td>
<td>125.4</td>
<td>734.7</td>
<td>14.6</td>
<td>45.4</td>
<td>53.1</td>
</tr>
<tr>
<td>300</td>
<td>433.2</td>
<td>192.2</td>
<td>734.2</td>
<td>20.6</td>
<td>45.3</td>
<td>57.2</td>
</tr>
<tr>
<td>400</td>
<td>428.4</td>
<td>319.7</td>
<td>760.9</td>
<td>29.6</td>
<td>46.9</td>
<td>66.7</td>
</tr>
<tr>
<td>500</td>
<td>429.0</td>
<td>509.1</td>
<td>740.7</td>
<td>40.7</td>
<td>45.7</td>
<td>77.1</td>
</tr>
<tr>
<td>600</td>
<td>431.5</td>
<td>637.0</td>
<td>775.0</td>
<td>45.1</td>
<td>47.8</td>
<td>87.2</td>
</tr>
<tr>
<td>700</td>
<td>430.3</td>
<td>783.4</td>
<td>742.1</td>
<td>51.4</td>
<td>45.8</td>
<td>94.2</td>
</tr>
<tr>
<td>800</td>
<td>430.0</td>
<td>865.9</td>
<td>730.1</td>
<td>54.0</td>
<td>45.1</td>
<td>98.5</td>
</tr>
</tbody>
</table>
Influence of the DBB (nsec) in the ratio LSC vs Gamma at Beta region (5-252 kev) and Blanks (100 min) in beta and alpha region

<table>
<thead>
<tr>
<th>DBB</th>
<th>BLANK cpmα</th>
<th>BLANK cpmβ</th>
<th>$\frac{\beta_{(5-252)}}{\gamma}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.10</td>
<td>1.1</td>
<td>4.4</td>
</tr>
<tr>
<td>100</td>
<td>0.13</td>
<td>1.1</td>
<td>5.6</td>
</tr>
<tr>
<td>200</td>
<td>0.40</td>
<td>5.4</td>
<td>8.4</td>
</tr>
<tr>
<td>300</td>
<td>0.37</td>
<td>6.4</td>
<td>10.2</td>
</tr>
<tr>
<td>400</td>
<td>0.40</td>
<td>5.1</td>
<td>10.9</td>
</tr>
<tr>
<td>500</td>
<td>0.50</td>
<td>7.1</td>
<td>12.4</td>
</tr>
<tr>
<td>600</td>
<td>0.50</td>
<td>7.9</td>
<td>12.8</td>
</tr>
<tr>
<td>700</td>
<td>0.60</td>
<td>8.1</td>
<td>13.5</td>
</tr>
<tr>
<td>800</td>
<td>0.60</td>
<td>8.3</td>
<td>13.8</td>
</tr>
</tbody>
</table>
Influence of quench at a fixed DBB (600 nSec)

Quencher agent: 2.5M HNO₃
Influence of quench at a fixed DBB (600 nSec)
Influence of quench at a fixed DBB (600 nSec)

BETA EFFICIENCY IN THE ALPHA REGION (100-252)

Rank 3 Eqn 47 $y^1 = a + bx^2 \ln x$

Count referred to 2322 dpm

<table>
<thead>
<tr>
<th>Count (100-252)</th>
<th>% Eff.</th>
<th>t-SIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>236.3</td>
<td>10.2</td>
<td>429.9</td>
</tr>
<tr>
<td>195.0</td>
<td>8.4</td>
<td>425.0</td>
</tr>
<tr>
<td>166.8</td>
<td>7.2</td>
<td>421.3</td>
</tr>
<tr>
<td>162.0</td>
<td>6.9</td>
<td>419.8</td>
</tr>
<tr>
<td>140.0</td>
<td>6.0</td>
<td>414.5</td>
</tr>
<tr>
<td>97.0</td>
<td>4.1</td>
<td>393.0</td>
</tr>
</tbody>
</table>
What would be an acceptable tracer amount?

For a maximum recovery of 90%

Gamma measurement of 0.5 Bq (24 hs with an error <10%)

Assuming the best efficiency obtained in the alpha region for 239Np (10.2%)

$$A = \frac{0.5}{0.9} \times \frac{3}{2} = 0.8 Bq$$
What would be an acceptable tracer amount?

^{239}Np counting in the region alpha: 2.3 cpm
taking into account 1 day of decay

$$\text{BKG}_{(100-252)} = 2.3 + 0.5 = 2.8 \text{ cpm}$$
What is the Minimum Detectable Activity for ^{237}Np?

Assuming that the variance of blank (0.5 cpm) and that of (tracer + blank) and random errors follow a gaussian distribution

Approaching by Currie’s model.

$$MDA = \left(2.71 + 2 \times 1.645 \sqrt{S_B^2 + S_{(T+B)}^2}\right) \times 3 = 0.07 \text{Bq/l}$$

$$t = 100 \text{ min}, \quad R_\gamma = 90\%, \quad V_s = 0.5 \text{l} \quad \text{Eff.} = 45.8\%$$
What is the Minimum Detectable Activity for ^{237}Np?

1) Preparation of a 8.0 Bq (+/-1%)/100ml standard solution of ^{239}Np

2) Addition of 10ml (by weight) to blank water samples (increasing amount every day)

3) Processed as described.

4) Gamma measurement 24 hs

5) Liquid Scintillation measurement
Experimental Results

<table>
<thead>
<tr>
<th>$R\gamma$</th>
<th>t-SIE</th>
<th>$\gamma_{\text{Eff.}}$ (100-252)</th>
<th>$CPM_{(T+B)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.0</td>
<td>425.1</td>
<td>8.35</td>
<td>2.70</td>
</tr>
<tr>
<td>81.0</td>
<td>427.3</td>
<td>9.09</td>
<td>2.89</td>
</tr>
<tr>
<td>83.5</td>
<td>425.5</td>
<td>8.48</td>
<td>2.40</td>
</tr>
<tr>
<td>84.0</td>
<td>428.0</td>
<td>7.34</td>
<td>3.10</td>
</tr>
<tr>
<td>80.1</td>
<td>430.2</td>
<td>10.3</td>
<td>2.64</td>
</tr>
</tbody>
</table>
Experimental Results

\[Av(cpm) = 2.75 \quad S (cpm) = 0.26 \]

\[Blank(cpm) = 0.50 \quad S (cpm) = 0.07 \]

\[\sqrt{(0.26^2 + 0.07^2)} = 0.27 \quad (cpm) \]

\[MDA = \left(\frac{2.71 + 2 \times 1.645 \sqrt{S_B^2 + S_{(T+B)}^2}}{R_{\gamma} \times E_{\text{eff}} \times t \times 60 \frac{dpm}{Bq} \times 2 \times V_s} \right) \times 3 = 0.12 \text{ Bq/l} \]

SQR converted to counts
Experimental Results

Spike of water samples at the experimental MDA level

<table>
<thead>
<tr>
<th>237Np (Bq)/l</th>
<th>239Np (Bq)</th>
<th>t-SIE</th>
<th>γ Eff $(100-252)$</th>
<th>CPM $(100-252)$</th>
<th>Result Bq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.153</td>
<td>0.810</td>
<td>420.6</td>
<td>7.18</td>
<td>4.10</td>
<td>0.18 +/- 18.5%</td>
</tr>
<tr>
<td>0.135</td>
<td>0.805</td>
<td>421.7</td>
<td>7.43</td>
<td>3.95</td>
<td>0.16 +/- 18.5%</td>
</tr>
<tr>
<td>0.161</td>
<td>0.812</td>
<td>430.1</td>
<td>10.2</td>
<td>5.74</td>
<td>0.40 +/- 17.5%</td>
</tr>
<tr>
<td>0.125</td>
<td>0.802</td>
<td>420.3</td>
<td>7.11</td>
<td>3.57</td>
<td>0.11 +/- 19.5%</td>
</tr>
<tr>
<td>0.127</td>
<td>0.804</td>
<td>428.7</td>
<td>9.6</td>
<td>3.72</td>
<td>0.13 +/- 19.0%</td>
</tr>
</tbody>
</table>
Experimental Results

The uncertainty percent was calculated taking into account only:

Recovery = 81.7% +/- 2.3%

Alpha efficiency: 45.8 % +/- 2.2%

\[S_{cpm(t+B)} = 275 \text{ cpm} \quad +/- \quad 9.0\% \]

\[\sigma_{(cpm)\text{alpha}} = \frac{\sqrt{N}}{N} * 100 \]
CONCLUSION

237Np may be traceable by using 239Np fresh prepared and calibrated but some consideration should be taken into account.

Under a precise control of quench variable as well as a reliable pre-calibrated standard of 239Np, gamma measurements are an useful tool to determine low amounts of tracer with acceptable precision.

The MDA obtained fits for the purpose though is a little bit higher than for alpha spectroscopy.
CONCLUSION

Although results at the MDA level seem to agree the previous calculation based on experimental data, it is necessary to focus a better fitting in the calibration curve of Eff vs Spillover in the alpha region. However, validation assays must go on in order to have a better statistical support.

An extra effort should be done in order to be able to measure 239Np in the beta region free of missclassified alpha emission.
THANK YOU VERY MUCH FOR YOUR ATTENTION