Determination of Cl-36 and I-129 by LSC after separation on an extraction chromatographic resin

Alexander Zulaufa, Bandombele Marcel Mokilib, Steffen Happelc, Phil Warwickd, Aude Bombardc, Hartmut Jungclasa

aRadiochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
bLaboratoire SUBATECH (CNRS/IN2P3 / Ecole des Mines de Nantes / Université de Nantes), Nantes, France
cTrisKem International, Rennes, France
dGAU-Radioanalytical, University of Southampton, Southampton, UK

LSC 2010
Paris, 07/09/10
Outline

- Scope
- Resin characterization
- Method development
- Spiked samples
- Summary
Scope

- Interest: monitoring of nuclear facilities for long-lived radionuclides
- Cl-36 (and I-129) frequently determined by LSC
 - Cl-36 (3.01 \times 10^4 y, $E_{\beta_{\text{max}}} =$ 708.6 keV),
 - I-129 (1.61 \times 10^7 y, $E_{\beta_{\text{max}}} =$ 151.2 keV)
- Existing separation methods often complicated and time-consuming

Aim:
- Development and characterization of a suited resin
- Development of a simple and quick method for separation of Cl-36 and I-129 from environmental and decommissioning samples
- Cl and I retained as chloride and iodide
 - Oxidation state adjustment might be necessary (e.g. Sn(II))
Resin characterization – Cl resin

- **Determination of** D_w **values**
 - For practical reasons in sulfuric acid

<table>
<thead>
<tr>
<th>Analyte</th>
<th>D_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td><1</td>
</tr>
<tr>
<td>Fe</td>
<td><1</td>
</tr>
<tr>
<td>Ni</td>
<td><1</td>
</tr>
<tr>
<td>Co</td>
<td><1</td>
</tr>
<tr>
<td>Cu</td>
<td><1</td>
</tr>
<tr>
<td>Zn</td>
<td>25</td>
</tr>
<tr>
<td>Cd</td>
<td><1</td>
</tr>
<tr>
<td>Ce</td>
<td>4</td>
</tr>
<tr>
<td>Pd</td>
<td>87000</td>
</tr>
</tbody>
</table>

- D_w values, selected elements, 1M H$_2$SO$_4$, Cl resin

- Selective for Pd and Ag
- $D_w(Ag)$ slightly decreases with increasing pH
 - remains $>3E+5$ at pH 5

- $D_w(Ag)$:
 - 1M H$_2$SO$_4$: $6.5E+05$
 - H$_2$SO$_4$ (pH 3): $6.0E+05$
 - H$_2$SO$_4$ (pH 5): $3.5E+05$

- Ag uptake:
 - 17 – 20 mg Ag$^+$ per 2 mL column
 - extraction equilibrium reached > 30 min
Preparation of Ag loaded Cl resin

- 10 g Cl resin weighed and transferred into 250 mL PE flask
- 650 mg AgNO₃ dissolved in 100 mL 1M H₂SO₄
- AgNO₃ - solution added to Cl resin, flask capped and shaken for 2 hours at a medium speed
- Resin filtered and rinsed twice with 1M H₂SO₄
- Dried

- Alternative: on-column loading
Resin characterization – Ag loaded Cl resin

• Maximum Cl and I uptake evaluated via column experiments (2 mL column loaded with 13 mg Ag⁺)
 ➢ I: 16.3±1.6mg; Cl: 4.3 ±0.2mg
 ➢ Can be increased by longer resin / Ag⁺ contact times and higher Ag⁺ amounts

• D_w values of chloride and iodide
 ➢ Extraction conditions: 1M H_2SO_4
 ➢ Elution conditions:
 • Chloride: 0.01 – 0.2M KSCN
 • Iodide: 0.01 – 0.2M KSCN; 0.04 – 0.35M Na_2S

• Batch experiments
Resin characterization – Ag loaded Cl resin

<table>
<thead>
<tr>
<th>Isotope</th>
<th>D_w retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl-36</td>
<td>1600</td>
</tr>
<tr>
<td>I-129</td>
<td>1980</td>
</tr>
</tbody>
</table>

- High uptake of chloride and iodide onto Ag$^+$ loaded Cl-resin in 1M H_2SO_4

Retention of ^{36}Cl and ^{129}I in 1M H_2SO_4

- ^{36}Cl: very low D_w at all tested KSCN concentrations
- ^{129}I: high D_w at all tested KSCN concentrations, low D_w at elevated Na_2S concentrations
Elution study

- 2 mL column Ag loaded Cl resin
- ^{36}Cl spiked NaCl solution
 - Load from 1M H_2SO_4
 - Rinse 3 x 5 mL 0.1M KSCN
- ^{129}I spiked NaI solution
 - Load from 1M H_2SO_4
 - Rinse 2 x 5 mL 0.1M KSCN
 - Rinse 10 mL H_2O
 - Rinse 2 x 5 mL 0.35M Na$_2$S
- Eluates analyzed by LSC
Elution study

- 36Cl eluted with 5ml of 0.1M KSCN
- As expected from batch experiments 129I not affected by KSCN
- 129I eluted with 5ml 0.35M Na$_2$S, elution not quantitative
Optimisation of I- elution

- Test of various rinsing steps upfront to I- elution

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Influence of the rinsing step upfront to the I-129 elution with Na\textsubscript{2}S: Rinsing with various volumes of dest. water; 10ml 0.01M NaHSO\textsubscript{3} (a), 10ml 0.1M NaHSO\textsubscript{3} (b), 10ml 1M NaHSO\textsubscript{3} (c), 10ml 1M NaNO\textsubscript{2} (d) 10ml 30% H\textsubscript{2}O\textsubscript{2} (e), 10ml 1%NH\textsubscript{3} (f) and 10ml 1% NaOH (g)}
\end{figure}

- Best results achieved with NH\textsubscript{3} and NaOH:
 - 1\% NH\textsubscript{3} : 97.3±0.9\%
 - 1\% NaOH: 93.7±1.4\%

- NaOH preferred
 - Ag bleeding with NH\textsubscript{3}
 - Interference in LSC
Scheme – Optimized method

- Load sample in 1M H₂SO₄
 - Addition of reducing agent if necessary (e.g. Sn(II))
- Rinse with 10ml of MilliQ
- Elute ³⁶Cl with 5ml of 0.1M SCN⁻
- Wash with 10ml of 1% NaOH
- Elute ¹²⁹I with 5ml of 0.35M Na₂S
Elution study

- Method applied to ^{36}Cl and ^{129}I containing solution

Combined Cl/I elution study with optimized method

- Clean $^{36}\text{Cl} / ^{129}\text{I}$ separation
Decontamination factors (Df)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Df in Cl fraction</th>
<th>Df in I fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>>29</td>
<td>>430</td>
</tr>
<tr>
<td>Mn</td>
<td>>210</td>
<td>>370</td>
</tr>
<tr>
<td>Co</td>
<td>>170</td>
<td>>1500</td>
</tr>
<tr>
<td>Ni</td>
<td>>170</td>
<td>>320</td>
</tr>
<tr>
<td>Cu</td>
<td>>210</td>
<td>>190</td>
</tr>
<tr>
<td>Zn</td>
<td>>32</td>
<td>>11</td>
</tr>
<tr>
<td>Rb</td>
<td>>16</td>
<td>>2300</td>
</tr>
<tr>
<td>Sr</td>
<td>>180</td>
<td>>17000</td>
</tr>
<tr>
<td>Cd</td>
<td>>6900</td>
<td>>7700</td>
</tr>
<tr>
<td>Cs</td>
<td>>200</td>
<td>>6200</td>
</tr>
<tr>
<td>Ba</td>
<td>>1000</td>
<td>>600</td>
</tr>
<tr>
<td>Pb</td>
<td>>300</td>
<td>>720</td>
</tr>
<tr>
<td>U</td>
<td>>1900</td>
<td>>200</td>
</tr>
<tr>
<td>Cs-137</td>
<td>>150</td>
<td>>150</td>
</tr>
<tr>
<td>Co-60</td>
<td>>320</td>
<td>>320</td>
</tr>
<tr>
<td>Sr/Y-90</td>
<td>>180</td>
<td>>160</td>
</tr>
<tr>
<td>Cl-36</td>
<td>NA</td>
<td>>160</td>
</tr>
<tr>
<td>I-129</td>
<td>>420</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Method applied to multi-element solutions
 - ICP-MS
- Cs-137, Co-60, Sr-90, Cl-36 or I-129 containing solutions
 - LSC
- Good decontamination factors in SCN⁻ and Na₂S fractions
- Clean I / Cl separation
Spiked samples I - water

- 50ml tap water adjusted to 1M H_2SO_4
- Spiked with known activities of Cl-36 and I-129
- Each 0.5 mg NaCl and NaI
- Addition of 17Bq of each Co-60, Sr-90 and Cs-137
- Three 10ml aliquots analyzed following optimized method
- Chemical yields obtained in reproducibility test applied
- LSC measurement of Cl- and I-fractions
Spiked samples I - water

<table>
<thead>
<tr>
<th></th>
<th>determined activities</th>
<th>added activities</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-129</td>
<td>A(I-129) / Bq</td>
<td>UA(I-129) / Bq</td>
<td>A(I-129) / Bq</td>
<td>UA(I-129) / Bq</td>
<td>Bias / %</td>
<td>E_n</td>
<td></td>
</tr>
<tr>
<td>Repl. 1</td>
<td>8,24</td>
<td>1,98</td>
<td>8,22</td>
<td>1,31</td>
<td>0,3%</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Repl. 2</td>
<td>8,17</td>
<td>1,97</td>
<td>8,22</td>
<td>1,31</td>
<td>-0,5%</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Repl. 3</td>
<td>7,86</td>
<td>1,89</td>
<td>8,22</td>
<td>1,31</td>
<td>-4,4%</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>Cl-36</td>
<td>A(Cl-36) / Bq</td>
<td>UA(Cl-36) / Bq</td>
<td>A(Cl-36) / Bq</td>
<td>UA(Cl-36) / Bq</td>
<td>Bias / %</td>
<td>E_n</td>
<td></td>
</tr>
<tr>
<td>Repl. 1</td>
<td>8,97</td>
<td>1,05</td>
<td>9,44</td>
<td>0,94</td>
<td>-5,1%</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Repl. 2</td>
<td>9,11</td>
<td>1,06</td>
<td>9,44</td>
<td>0,94</td>
<td>-3,5%</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Repl. 3</td>
<td>9,12</td>
<td>1,06</td>
<td>9,44</td>
<td>0,94</td>
<td>-3,5%</td>
<td>0,23</td>
<td></td>
</tr>
</tbody>
</table>

Comparison determined vs. reference activities, water, 3 replicates, bias and E_n, $k=2$

- Overall good agreement, slight negative bias for Cl-
Spiked samples II – effluents (Subatech)

- 4 spiked effluent samples
 - Cl 0: Blank sample
 - Cl 1 and Cl2: No I-129, identical Cl-36 activities
 - Cl 3: Cl-36 / I-129 activity ratio 1:1
 - Cl 4: Cl-36 / I-129 activity ratio 1:10

- Preparation loading solutions:
 - 2.5 mL Standard solution (Cl1 – Cl4)
 - 0.5 mL 0.1M NaCl and 0.5 mL 0.1M NaI
 - 6.5 mL 1M H₂SO₄

- Cl fraction collected, 5 mL 0.1M NaSCN added

- 10 mL Cocktail

- LSC (TriCarb 3170TR/SL, 12 – 250 keV, 60min)
Spiked samples II – effluents (Subatech)

Column loading

Cl⁻ elution
Spiked samples II – effluents (Subatech)

<table>
<thead>
<tr>
<th>Sample</th>
<th>CI-36 Theoretical activity</th>
<th>I-129 Theoretical activity</th>
<th>Perkin Elmer TriCarb 3190TR/SL</th>
<th>Comparison of CI-36 activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (Bq.L⁻¹)</td>
<td>Uₐ (Bq.L⁻¹)</td>
<td>A (Bq.L⁻¹)</td>
<td>Uₐ (Bq.L⁻¹)</td>
</tr>
<tr>
<td>CI0</td>
<td>Blank</td>
<td>-</td>
<td>Blank</td>
<td>-</td>
</tr>
<tr>
<td>CI1</td>
<td>1.873E+04</td>
<td>6.556E+02</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>CI2</td>
<td>1.873E+04</td>
<td>6.556E+02</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>CI3</td>
<td>1.873E+04</td>
<td>6.556E+02</td>
<td>1.889E+04</td>
<td>5.100E+02</td>
</tr>
<tr>
<td>CI4</td>
<td>1.873E+03</td>
<td>6.556E+01</td>
<td>1.897E+04</td>
<td>5.121E+02</td>
</tr>
</tbody>
</table>

Comparison determined vs. reference activities, effluents, bias and zeta test values

- Very good agreement between theoretical and obtained activity
- Repeatability CI1/CI2: 3.7% (N = 2, k = 1)
- Clean Cl/I separation
Spiked samples III – filter

- Filter samples (250 mg)
- Spiked with known activities of Cl-36 and I-129
- Extracted with 1M NaOH at 70°C for 4h
- Centrifugation, residue rinsed with 2 mL water
- Supernatants combined, adjusted to 1M H$_2$SO$_4$ and filled up to 50 mL
- Analysis of three 10 mL aliquots
- Average extraction and separation yields used for result calculation
Spiked samples III – filter

<table>
<thead>
<tr>
<th>Determined activities</th>
<th>Reference activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{129}I</td>
<td>^{129}I</td>
</tr>
<tr>
<td>$A_{0}^{(129}\text{I}), \text{ Bq}$</td>
<td>$A_{0}^{(129}\text{I}), \text{ Bq}$</td>
</tr>
<tr>
<td>$U_{A(129}\text{I}), \text{ Bq}$</td>
<td>$U_{A(129}\text{I}), \text{ Bq}$</td>
</tr>
<tr>
<td>Bias, %</td>
<td>E_{n}</td>
</tr>
<tr>
<td>Repl. 1</td>
<td>7.89</td>
</tr>
<tr>
<td>Repl. 2</td>
<td>8.28</td>
</tr>
<tr>
<td>Repl. 3</td>
<td>7.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>^{36}Cl</th>
<th>^{36}Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{0}^{(36}\text{Cl}), \text{ Bq}$</td>
<td>$A_{0}^{(36}\text{Cl}), \text{ Bq}$</td>
</tr>
<tr>
<td>$U_{A(36}\text{Cl}), \text{ Bq}$</td>
<td>$U_{A(36}\text{Cl}), \text{ Bq}$</td>
</tr>
<tr>
<td>Bias, %</td>
<td>E_{n}</td>
</tr>
<tr>
<td>Repl. 1</td>
<td>9.58</td>
</tr>
<tr>
<td>Repl. 2</td>
<td>9.20</td>
</tr>
<tr>
<td>Repl. 3</td>
<td>9.70</td>
</tr>
</tbody>
</table>

Comparison determined vs. reference activities, filter, 3 replicates, bias and E_{n}, k=2

- Overall good agreement, slight negative bias for ^{129}I.
On-going work

- Combined use of Raddec Pyrolyser and Cl resin
 - Co-operation with Raddec (UK)
 - Presentation P. Warwick at 11th ERA next week

- Analysis of real samples and comparison with other methods
 - Co-operation with Subatech (France)

- ‘Beta testing‘ by different labs
 - If you are interested in participating please contact us!
Summary

- Cl-resin selective for Pd and Ag (Pt, Hg and Au)
 - Method robust against potential interferences

- Method for the separation of ^{36}Cl and ^{129}I presented
 - Applies to chloride and iodide
 - Reduction with Sn(II)

- Clean Cl$^-$ / I$^-$ separation

- Analysis of spiked samples showed overall good agreement
Thank you for your attention!