DISTILLATION
as a step in tritium analysis

Jasmina Kožar Logar
Jožef Stefan Institute Ljubljana, Slovenia

Paris, France, September 6th 2010, Advances in Scintillation Spectrometry LSC 2010
Tritium (H-3)

ENVIRONMENTAL MONITORING

- DATING
- hydrogeology
- oceanography
- lower limits of detection
- smaller uncertainties

ideal tracer
Sample preparation by electrolytical enrichment

1st distillation ➔ Electrolytical enrichment ➔ 2nd distillation
\[A_T = \frac{N_{SA} \cdot A_{ST} \cdot D}{N_{ST} \cdot Z_I} \]

- \(N_{SA} \): net count rate of the sample (cpm)
- \(N_{ST} \): net count rate of the standard (cpm)
- \(A_{ST} \): activity concentration of the standard (Bq/kg)
- \(Z_I \): tritium enrichment factor for the given sample
- \(D \): decay correction

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Symbol</th>
<th>Sources of uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial distillation of water samples</td>
<td></td>
<td>Possibility of contamination for samples with low tritium content</td>
</tr>
<tr>
<td>2</td>
<td>Weighing of cells before electrolysis</td>
<td>W_{CE}, W_{CI}, W_{I}</td>
<td>Uncertainty of electronic balance, buoyancy forces, mass loss due to gas production in chemical reaction</td>
</tr>
<tr>
<td>3</td>
<td>Electrolysis of water samples</td>
<td>Q</td>
<td>Uncertainty of amperehour-meter, current leaks</td>
</tr>
<tr>
<td>4</td>
<td>Weighing of cells after electrolysis</td>
<td>W_{CE}, W_{CF}, W_{F}</td>
<td>Uncertainty of electronic balance, buoyancy forces</td>
</tr>
<tr>
<td>5</td>
<td>Neutralisation and distillation of water samples after enrichment (final distillation)</td>
<td></td>
<td>Possibility of contamination for samples with low tritium content, too high pH of the distilled sample</td>
</tr>
<tr>
<td>6</td>
<td>Preparation of the scintillation mixture</td>
<td>V_{W}</td>
<td>Uncertainty of pipettes used, temperature of the preparation process, excessive exposure of the scintillation mixture to sunlight</td>
</tr>
<tr>
<td>7</td>
<td>Radioactivity measurement</td>
<td>N_{SA}, N_{ST}, N_{B}, N_{SPI}, N_{SPF}</td>
<td>Random variations of count rates, long-term stability of the spectrometer, static charges, fluorescence</td>
</tr>
<tr>
<td>8</td>
<td>Calculating the actual enrichment parameter for sample cell</td>
<td>P</td>
<td>Long-term stability of the enrichment system, temperature of the enrichment process, losses of water due to evaporation from the cells, propagation of uncertainties associated with steps 2-7</td>
</tr>
<tr>
<td>9</td>
<td>Calculating the enrichment factor for each sample</td>
<td>Z_{I}</td>
<td>Long-term stability of the enrichment system, temperature of the enrichment process, losses of water due to evaporation from the cells, propagation of uncertainties associated with steps 2-8</td>
</tr>
<tr>
<td>10</td>
<td>Calculating the decay correction factor</td>
<td>D</td>
<td>Uncertainty of the decay constant for tritium</td>
</tr>
<tr>
<td>11</td>
<td>Assessing the uncertainty of the used tritium standard and dilution</td>
<td>A_{ST}</td>
<td>Uncertainty of the certified high-level standard, dilution procedure</td>
</tr>
<tr>
<td>12</td>
<td>Calculating tritium activity concentration in the analysed sample</td>
<td>A_{T}</td>
<td>Propagation of uncertainties associated with steps 2-11</td>
</tr>
</tbody>
</table>
1st distillation

Electrolytical enrichment

2nd distillation

LSC spectrometry

Criteriums for pH, conductivity?
Distillation to the dry end?
Fast, slow distillation?

DIFFERENT LABORATORY PRACTICES!
1st distillation

SAMPLE
500 mL of deionized water + spike

EXPERIMENT
FAST distillation: the maximum power of heaters; 26 fractions
SLOW distillation: boiling on minimum; 28 fractions
2nd distillation

SAMPLE
10 L of deionized water + spike for 20 x 500 mL subsamples

EXPERIMENT
Electrolytic run: 1024 Ah
Current: 4 A
Initial sample: 500.5 ± 0.3 mL
Final sample: 117.6 ± 0.5 mL
Distillation: 6 or 7 consecutive fractions

Average pH of fractions

"speed" 2 of distillation not under strict control!
2nd distillation

SAMPLE
10 L of deionized water + spike for 20 x 500 mL subsamples

EXPERIMENT
Electrolytic run: 1400 Ah (as usual routine procedure)
Current: 3.2 – 9.9 A
Initial sample: 499.1 ± 0.3 mL
Final sample: 19.9 ± 1.6 mL
Distillation: fast and slow (10 samples of each)

U-test
fast - real value	1.89	ATTENTION!
slow - real value	0.63	OK
fast – slow	1.29	OK

pH measurement of 3 „cumulative“ fractions

Graph
- pH vs. mass % of cumulative fraction
- Data points for fast and slow distillation
- Fast distillation: 1.89 (ATTENTION!), real value: 0.63, 1.29 (OK)
- Slow distillation: 90, 85, 80, 75, 70

Notes
- ATTENTION!
pH and efficiency

SAMPLE
- deionized water with different pH + spike

EXPERIMENT
- different sample: scintillator ratio
- time-dependent measurements

Average of 7 to 9 measurements in 1 – 5 days
Counting time of each measurement: 100 min
Conclusions

BE CAREFUL WITH DISTILLATION!

„speed of distillation → pH → counting efficiency"

wrong result or at least big uncertainty!

„slow“ distillation
„calibration“ of heaters
always the same portion of residue in distillation process
control of pH
THANK YOU!