The true coincidence summing correction method at STUK, Finland

Seppo Klemola
Research and Environmental Surveillance
STUK - Radiation and Nuclear Safety Authority
Finland
STUK gamma spectrum analysing program including summing correction

- Original STUK analysing program GAMMA-81: coincidence summing correction subroutine CSUM based on the general equations presented by Andreev et al. (1972) and McCallum and Coote (1975)
- In 1985 CSCOR program: the effect of X-rays (following internal conversion or decay by EC) by Debertin and Schötzig (1979)
- CSCOR can be run also separately
Input data

- Full-energy peak efficiency
- Total efficiency
- Detailed/modified decay scheme data including conversion coefficient data

| symbol, half-life, type of decay (β, EC) |
| symbol, half-life, type of decay (β, EC) |
| energy of KX-ray, fluorescence yield, numbers of energies (n), excitation levels, protons and neutrons |
| initial and final excitation levels of the transition, gamma-ray intensity, total internal conversion coefficient, K-conversion coefficient, intensity of decay to the initial level |

Cs-134	2.0648	Y	B-		
32.9	0.877	9	5	55	79
4 2	475.36	1.465	1.00E-2	1.00E-2	0.0248
2 1	563.227	8.38	5.7E-3	5.7E-3	0.0045
5 3	569.315	15.43	7.8E-3	7.8E-3	0.274
1 0	604.699	97.56	5.03E-3	5.03E-3	0.00008
3 1	795.845	85.44	2.63E-3	2.63E-3	0.7011
5 2	801.932	8.73	2.69E-3	2.69E-3	0.274
4 1	1038.571	1.00	1.73E-3	1.73E-3	0.0248
2 0	1167.938	1.805	1.18E-3	1.18E-3	0.0045
5 1	1365.152	3.04	8.2E-4	8.2E-4	0.274
Cs-134

EKX=32.90 OMK= 0.877 EPX=8.788E-02 ETX=1.2595E-01

<table>
<thead>
<tr>
<th>TRANSITION ENERGY</th>
<th>CORRECTION COEFFICIENT</th>
<th>N(I)</th>
<th>D(I,K)</th>
<th>M(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0</td>
<td>604.69</td>
<td>1.092</td>
<td>1.902E-02</td>
<td>1.6735E-02</td>
</tr>
<tr>
<td>2-0</td>
<td>1167.92</td>
<td>0.928</td>
<td>1.8374E-04</td>
<td>1.8393E-03</td>
</tr>
<tr>
<td>2-1</td>
<td>563.23</td>
<td>1.161</td>
<td>9.9898E-02</td>
<td>9.9898E-02</td>
</tr>
<tr>
<td>3-1</td>
<td>795.84</td>
<td>1.101</td>
<td>9.8474E-01</td>
<td>9.8474E-01</td>
</tr>
<tr>
<td>4-1</td>
<td>1038.56</td>
<td>1.037</td>
<td>9.6104E-02</td>
<td>9.6104E-02</td>
</tr>
<tr>
<td>4-2</td>
<td>475.34</td>
<td>1.156</td>
<td>2.4932E-02</td>
<td>2.4932E-02</td>
</tr>
<tr>
<td>4-3</td>
<td>242.80</td>
<td>1.162</td>
<td>2.4932E-02</td>
<td>2.4932E-02</td>
</tr>
<tr>
<td>5-1</td>
<td>1365.16</td>
<td>0.889</td>
<td>2.6808E-04</td>
<td>2.6808E-04</td>
</tr>
<tr>
<td>5-2</td>
<td>801.93</td>
<td>1.156</td>
<td>2.7400E-01</td>
<td>2.7400E-01</td>
</tr>
<tr>
<td>5-3</td>
<td>569.32</td>
<td>1.162</td>
<td>2.7400E-01</td>
<td>2.7400E-01</td>
</tr>
<tr>
<td>5-4</td>
<td>326.50</td>
<td>1.162</td>
<td>2.7400E-01</td>
<td>2.7400E-01</td>
</tr>
</tbody>
</table>
References

- Debertin K., Schötzig U. Coincidence Summing Corrections in Ge(Li)-Spectrometry at Low Source-to-Detector Distances Nuclear Instruments and Methods 158 (1979), 471-477.
Gamma Laboratories

3 counting rooms:
 2 in Helsinki, 1 in Rovaniemi

• Special concrete and mortar with low abundance of natural radionuclides

 Ra-226 6.2 Bq/kg
 Th-232 4.3 Bq/kg
 K-40 70.0 Bq/kg

• Controlled access

• Special designs for air conditioning to decrease background radiation due to 1) radon, 2) severe fallout

• Separate counting and operator/computer rooms

• Pipelines for LIN supply

• UPS + reserve power generator
14 Spectrometers

- coaxial HPGe
- vertical cryostat
- 13 p-type, 1 n-type
- rel. eff. 20-100%
- 12-14 cm Pb BG-shielding Cu+Cd lined
- DSP + NIM electronics, MCB
- control: local PC or LAN workstations
Beakers

cylindrical:
0-30 ml, free sample height
0-100 ml, free sample height

Marinelli:
0.5 l, fixed sample height

New measuring geometries can be calibrated using DECCA-programme
Software

• Measurement control: **MAESTRO** from ORTEC
• Spectrum analysis: **GAMMA-99** from STUK
 • originally Gamma-81 (Fortran 5)
 • sample height and density correction
 • cascade summing correction since 1983! (Andreev, 1981)
 • DOS-version 1990 (Fortran 77)
 • Windows-version 1997
 • automatic and interactive operation modes
• Efficiency calibration calculation: **DECCA**
 • efficiency transfer method (Moens et al, 1981)
 • programmed in co-operation w. NRPA Norway in 1990
 • validated in ICRM and Euromet projects
Accreditation

- 1996: Gamma spectrometry as a pilot project, 1st draft of quality manual
- 1997: STUK Quality system (TQM): basis for laboratory manuals
- 1998-1999: Preparation of the laboratory manuals
- Feb 1999: Main documentation to FINAS
- 17.12.1999: Accreditation certificate
- 2003: Renewed accreditation acc. ISO/IEC 17025
Fields and volume

• Surveillance of environmental radiation
 • Radioactive substances in outdoor air, deposition, surface water, drinking water, milk, foodstuffs and in the Baltic Sea

• Research, radioecological studies
 • Artificial radionuclides: fallout, NPP discharges, ...
 • Natural radionuclides: eg. wood ash, sediment dating, ...

• Contracted service
 • Industry NPP environmental monitoring, national and international organisations and institutes

• Emergency preparedness, method development, QA

• Total volume of gammalaboratories: 5000 anal./year
Procedure

- Sample collection & preparation not included in the method
- Optimisation of sample flow
 - right sample (amount), right detector (type and efficiency), right counting time
- Spectrum acquisition (counting’, measurement’)
- Computer analysis
- Evaluation of analysis report, re-analysis if needed
- All stages (to be) integrated to LIMS with advanced handling of uncertainties
Intercomparisons

+ Successful participation in intercomparisons: the best way of proving good quality
+ One of the ways to validate a new method
 – The procedure → results not always comparable with routine work
 – The results often only available after a long time, even years

![Graph showing Cs-137 levels over years](image-url)
Special Intercomparisons

Fresh fission and activation products in NPP primary coolant water

- Inspection of power plant laboratory extended to intercomparison between 6 gamma spectrometry laboratories in Finland since 1994
- ‘age’ of the sample 3-5 h → possible to analyse nuclides with half-lives < 1 h
- typically results of 30 nuclides

Use of Synthetic Spectra
to test and demonstrate

- software capability and quality
- emergency preparedness
- personnel competence

Reaktorivesivertailu 2003
The summing of gamma- and X-ray peaks + Ge-escape peaks

case: ^{111}In

Energy [keV]