Monte Carlo calculation of detector efficiency
GESPECOR and GEANT

O. Sima and D. Arnold
Bucharest University and PTB Braunschweig

ICRM Gamma WG Meeting Paris Nov. 2006
M. C. Simulations of detector efficiencies

GESPECOR and GEANT 3.21
- 2 sets of results:
 - first set: peak efficiency defined as in experimental work
 (1/10 from the peak height: 96.82 % from Gaussian)
 - second set: ideal peak efficiency (the complete Gaussian)

GESPECOR
- User friendly MC software for solving problems in gamma ray spectrometry with Ge detectors:
 - self-attenuation
 - coincidence summing
 - peak and total efficiency
Peak efficiency definition

- in measurement: based on a region of interest from the peak, e.g. between 1/10 from the peak height (for a Guassian shape, 96.82% from the ideal peak)
- in simulations peak width is not normally reproduced – it depends on charge production and collection etc. Possible to apply a Gaussian spread of the energy deposited in the sensitive volume of the detector, assuming that the peak has a Gaussian shape or simply to take 0.9682 from the ideal efficiency.
- possible practical definitions in simulations based on:
 - interactions in the sensitive volume without any energy lost outside the sensitive volume
 - the number of counts in a suitably defined energy bin
- important to have a consistent use of the definition of the peak, especially when coincidence summing effects are present

ICRM Gamma WG Meeting Paris Nov. 2006
Small angle scattering in the source and the other media problems if an energy bin is used:

- at low energy, weak dependence of scattered photon energy on angle

 e.g. 45 keV: all cases with scattering angle <30° have E>44.5 keV

⇒ Peak efficiency defined using an energy bin might depend on bin width (small angle scattering; rounding errors)
⇒ it might be also influenced by the environment of the measurement, not only by the source, detector and media in between

ICRM Gamma WG Meeting Paris Nov. 2006
Geometry 2 and 3 Spectrum at 45 keV

Geometry 2 (normalized)

Geometry 3

K$_\beta$ escape peak

Number of counts

Energy (keV)

10^5

10^4

10^3

10^2

10^1

1

0

0.01

0.02

0.03

0.04

0.05

45 keV
GESPECTOR: physics

Photon cross sections:
- for each material 100 points between 1.9 keV and 4 MeV; in addition, values before and after each X-Ray absorption edge, on the basis of XCOM
- log-log interpolation
- very good accord with XCOM (also in the close vicinity of absorption edges)

Electron processes:
- multiple scattering (Moliere, third function included), or faster semiempirical method
- bremsstrahlung: fast algorithm, sampling using Walker algorithm
- energy loss fluctuations neglected
- delta electron production neglected
- energy cut: 10 keV

ICRM Gamma WG Meeting Paris Nov. 2006
GESPECOR – variance reduction

- Peak and total efficiency evaluated separately:
 - peak efficiency: photon history stopped when energy lost outside the sensitive volume of the detector
 - materials between the point of emission and the sensitive volume of the detector: attenuating media
 - emission from source: focalized towards the detector
 - total efficiency: photon history stopped at the first interaction in the sensitive volume of the detector
- Always force the first interaction in the detector
- Whenever possible use mean values instead of random sampling (e.g. use probability of the emission of groups of photons instead of random simulation of decay cascades in coincidence summing computations)
- Use efficient sampling (Walker, interpolation)
Intercomparison results

Comparison between our results obtained with GESPECOR and with GEANT:
- in geometry 1 reasonable agreement
- in geometry 2 and 3 higher discrepancies, especially at low energies
Agreement of the results for geometry 1 implies that cross sections are in accord?
- no, in geometry 1 at low energy the detector is practically an „infinitely thick“ detector, irrespective to the exact values of the cross sections.
- in fact, important differences between XCOM and GEANT cross sections, especially in photoelectric cross section (XCOM – from NIST, Berger and Hubbell)
Peak Efficiency

GESPECOR versus GEANT

ICRM Gamma WG Meeting Paris Nov. 2006
Differences in photon cross sections in Ge

ICRM Gamma WG Meeting Paris Nov. 2006
Differences in photon cross sections in Al and H2O

ICRM Gamma WG Meeting Paris Nov. 2006

XCOM versus GEANT

Energy (MeV)

% Difference

Al Photoeffect
H2O Photoeffect

ICRM Gamma WG Meeting Paris Nov. 2006
Effect of the differences in cross sections in the case of geometry 1:
- at 45 keV, peak efficiency is changed by 0.08% and total efficiency is changed by 0.07% if artificial Ge density equal to 6 g/cm3 (instead of 5.323) is used in GEANT calculations.

Effect of differences in cross sections in the case of other geometries:
- at 45 keV, if in GEANT the dead layer density is changed from 5.323 g/cm3 to 5.565 and the Al density is changed from 2.7 g/cm3 to 2.828, the XCOM and GEANT 3.21 cross sections become equal:
 => change in peak efficiency -12.6% (G2)
 => change in total efficiency -12.2% (G2)
- at 45 keV if in GESPECOR the cross sections are modified artificially to be equal to the GEANT cross sections, the differences between GESPECOR and GEANT decrease to 0.5% (G2) and 1.2% (G3) (Ge X-Ray escape excluded).
At low energy photon attenuation in the media between the emission point and the sensitive volume of the detector are most important.

⇒ dependence on the photon cross sections (especially for photoeffect)

⇒ Which cross sections are the best?

Effect of the low energy cut-off:
- in GESPECOR 1.9 keV for photons, 10 keV for electrons
- in GEANT 3.21 10 keV for photons, 10 keV for electrons

Computations with GEANT also with 15 and 20 keV low energy cut-off

⇒ small change in peak efficiency, practically no change in total efficiency
Is the 10 keV energy cut-off of no importance?

Ge K X-Rays: \(K_{\alpha 2} \) 9.85543 (51.49%),

\(K_{\alpha 1} \) 9.88653 (100%), \(K_{\beta 3} \) 10.9781 \(K_{\beta 1} \) 10.9822

\(K_{\beta 3''} \) 11.0748 (22.37), \(K_{\beta 2} \) 11.101 (0.49%)

=> 6.63 times higher probability of X Rays with \(E < 10 \) keV than with \(E > 10 \) keV

If in GESPECOR the simulation of Ge X-Rays is prohibited, the discrepancy in geometry 1 at low energies between GESPECOR and GEANT is much reduced
Geometry 1 Spectrum at 45 keV

- Low energy cut 10 keV
- Low energy cut 12 keV

Kβ escape peak

Number of counts

Energy (keV)
Computing times: ACER Notebook, Pentium M Centrino 1.4 GHz

<table>
<thead>
<tr>
<th>Geometry</th>
<th>GESPECOR</th>
<th>GEANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry 1</td>
<td>Peak efficiency: 3 min</td>
<td>1100 min</td>
</tr>
<tr>
<td></td>
<td>Total efficiency: 3 min</td>
<td>3 min</td>
</tr>
<tr>
<td>Geometry 2</td>
<td>Peak efficiency: 4 min</td>
<td>2150 min</td>
</tr>
<tr>
<td></td>
<td>Total efficiency: 15 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Geometry 3</td>
<td>Peak efficiency: 8 min</td>
<td>17000 min</td>
</tr>
<tr>
<td></td>
<td>Total efficiency: 60 min</td>
<td>60 min</td>
</tr>
</tbody>
</table>

ICRM Gamma WG Meeting Paris Nov. 2006
Conclusions

Monte Carlo methods are very useful for assisting in gamma ray spectrometry calibration problems
- Good cross sections are required
 - most important: photoelectric cross sections
- Low energy cut should be low enough
- Good knowledge of the details of the media between the source and the active volume of the detector