13N – Comments on evaluation of decay data
by V. Chisté and M. M. Bé

1) Decay Scheme

13N disintegrates by β⁺ emission (99,818 (13) %) and electron capture (0,182 (13) %) to the ground state of the stable nuclide 13C.

2) Nuclear Data

The Q value (2220,44 (27) keV) is from the evaluation of Audi and Wapstra (1995Au04), and has been calculated using the formula:

\[Q = M(A,Z) - M(A,Z-1), \]

where M(A,Z) and M(A,Z–1) are the measured atomic masses of 13N and 13C, respectively.

The \(E_{\beta^+} \) deduced from this Q value (\(E_{\beta^+} = 1198,45 \) (27) keV) agrees with the weighted average value of 1199,00 (36) keV, deduced from measured values (see § β⁺ Transition and Electron Capture Transition).

The measured \(^{13}\text{N}\) half–life values (in minutes) are given below:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward (1939Ward)</td>
<td>9,93 (3)</td>
</tr>
<tr>
<td>Siegbahn (1945Sieg)</td>
<td>10,13 (10)</td>
</tr>
<tr>
<td>Cook (1948Cook)</td>
<td>10,2 (1)</td>
</tr>
<tr>
<td>Churchill(1953Ch34)</td>
<td>10,048 (32)</td>
</tr>
<tr>
<td>Wilkinson (1955Wi43)</td>
<td>10,08 (4)</td>
</tr>
<tr>
<td>Daniel (1957Da08)</td>
<td>9,960 (30)</td>
</tr>
<tr>
<td>Deineko (1957De22)</td>
<td>10,02 (10)</td>
</tr>
<tr>
<td>Norbeck (1957No17)</td>
<td>10,07 (6)</td>
</tr>
<tr>
<td>Arnell (1958Ar15)</td>
<td>9,960 (30)</td>
</tr>
<tr>
<td>King (1960Ki02)</td>
<td>9,93 (5)</td>
</tr>
<tr>
<td>Janecke (1960Ja12)</td>
<td>9,965 (5)</td>
</tr>
<tr>
<td>Ebrey (1965Eb01)</td>
<td>9,96 (2)</td>
</tr>
<tr>
<td>Bormann (1965Bo42)</td>
<td>10,05 (5)</td>
</tr>
<tr>
<td>Ritchie (1968Ri15)</td>
<td>9,963 (9)</td>
</tr>
<tr>
<td>Singh (1973SiYS)</td>
<td>10,0 (5)</td>
</tr>
<tr>
<td>Azuelos (1977Az01)</td>
<td>9,965 (10)</td>
</tr>
<tr>
<td>Katoh (1989Katoh)</td>
<td>9,962 (20)</td>
</tr>
</tbody>
</table>

The weighted average has been calculated using the Lweight computer program (version 3).
The Siegbahn (1945Siegbahn) and Cook (1948Cook) values have been shown to be outliers by the Lweight program, based on the Chauvenet’s criterion. For the remaining 15 statistically consistent values, the largest contribution to the weighted average comes from the value of Janecke (1960Ja12), with statistical weight of 54 %. The reduced–χ^2 is 1,65.

The adopted value is the weighted average : $9,9670 \text{ min}$, with an uncertainty of $0,0037 \text{ min}$.

2.1) β^+ Transition and Electron capture transition.

The β^+ and electron capture probabilities shown in Tables 2.1 and 2.2, respectively, have been deduced by using a K/β^+ ratio of $(1,68 \pm 0,12) \times 10^{-3}$ measured by Ledingham (1963Le22) and normalizing to a total probability ($P_{\beta^+} + P_{EC}$) of 100 %. This experimental K/β^+ ratio is close to the following theoretical values:

a) $1,864 \times 10^{-3}$ calculated with LOGFT program;
b) $1,939 \times 10^{-3}$ calculated by Fitzpatrick (1973Fitzpatrick);
c) $1,800 \times 10^{-3}$ given by Bambynek (1977Ba48);
d) $1,78 \times 10^{-3}$ given by Ledingham (1963Le22).

The uncertainties were estimated by standard error–propagation techniques.

The $lg ft$ value for β^+ transition (3,654) has been calculated with the program LOGFT for an allowed transition. This value agrees with 3,637 suggested by Ajzenberg–Selove (1981Aj01, 1986Aj01 and 1991Aj01).

The partial sub shell capture probabilities P_K and P_L were calculated for an allowed transition using the computer program EC–Capture.

A weighted average ($1199,0 (4) \text{ keV}$) of the β^+ end–point energy has been deduced (using the Lweight computer program, version 3) from the following measured values (in keV):

<table>
<thead>
<tr>
<th>Reference</th>
<th>Values (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hornyak (1950Ho01)</td>
<td>1202 (5)</td>
</tr>
<tr>
<td>Grabowsky (1954Grabowsky)</td>
<td>1185 (25)</td>
</tr>
<tr>
<td>Daniel (1957Da08)</td>
<td>1190 (3)</td>
</tr>
<tr>
<td>Fitzpatrick (1973Fitzpatrick)</td>
<td>1198,5 (9)</td>
</tr>
<tr>
<td>Raman (1978Raman)</td>
<td>1198,7 (4)</td>
</tr>
</tbody>
</table>

The largest contribution (with an statistical weight of 81 %) to the weighted average of these 5 values comes from the value of Raman (1978Raman). The weighted average is 1199,00 keV, with an internal uncertainty of 0,36 keV and a reduced–χ^2 of 2.2. This value agrees with E_{β^+} (1198,45 (27) keV), which was deduced from the adopted Q value (1995Au04) in this evaluation.

3) Gamma–ray Emissions

The annihilation radiation emission intensity (I_{511}) is P_{β^+} ($= 99,818 (13)$), multiplied by 2, without the correction factor for the annihilation–in–flight processus in the medium. That is, $I_{511} = 199,636 (26)$ %.

4) Atomic Data

Atomic K–fluorescence yield (ω_K) is from Bambynek (1984Bambynek).
5) References

1945 Siegbahn S. Siegbahn, Arkiv F. Art. Mat. Fys. 32A (1945) 9 [T1/2].
1950 Ho01 B. Hornyak, Phys. Rev. 77 (1950) 160 [end–point energy].
1952 Aj38 F. Ajzenberg, Rev. Mod. Phys. 24 (1952) 321 [T1/2, end–point energy, log ft].
1955 Aj61 F. Ajzenberg, Rev. Mod. Phys. 27 (1955) 77 [T1/2, end–point energy, log ft].
1958 Ar15 S. E. Arnell, J. Dubois, O. Almen, Nucl. Phys. 6 (1958) 196 [T1/2].
1958 St50 D. Strominger, J. T. Seaborg, Rev. Mod. Phys. 30 (1958) 585 [T1/2, end point energy, Q, log ft].
1960 Ja12 V. J. Janecke, Z. F. Naturf. 15A (1960) 593 [T1/2].
1965 Eb01 T. G. Ebrey, P. R. Gray, Nucl. Phys. 61 (1965) 479 [T1/2].
1965 Bo42 M. Bormann, E. Fretwurst, P. Schelka, G. Wrege, Nucl. Phys. 63 (1965) 438 [T1/2].
1968 Ri15 A. I. M. Ritchie, Nucl. Inst. Meth. 64 (1968) 181 [T1/2].
1978 Raman S. Raman, C. A. Houser, T. A. Walkiewicz, I. S. Towner, Atomic Data and Nucl. Data Tables 21 (1978) 567 [T1/2, end point energy, Q, log ft].
2000 Codata Codata Group, Revs. Modern Phys. 72 (2000) 351 [m0c].