The initial evaluation was completed in 1998. This revised evaluation was done in 2009, taking into account the available literature by April 2009.

1 Decay Scheme

The decay scheme is complete since all of the levels in 40Ar and 40Ca below the decay energies are populated.

The J^π and half-life of the excited level are from 1990EN08 evaluation.

2 Nuclear Data

Q values are from Audi and Wapstra 2003 (2003AU03).

A full list of the half-life measurements available by April 2009, and the reasons why certain have been excluded by the evaluator, is given in Table 3.

Three types of measurements were carried out: $T_{1/2}(\beta^-)$ and $T_{1/2}(\text{EC, } 1460 \text{ keV})$ which are partial half-lives, and $T_{1/2}$ which is the total half-life. Branching ratios are needed to evaluate the 40K half-life from these measurements: P_{β^-} for the 40K\rightarrow^{40}Ca transition, $P_{\text{ec,1460}}$ for the 40K\rightarrow^{40}Ar$^2+$(1460 keV) transition, P_{β^+} and $P_{\text{ec,gs}}$ for the 40K\rightarrow^{40}Ar0(ground state) transition. So, $T_{1/2}(\beta^-)$ and $T_{1/2}(\text{EC, } 1460 \text{ keV})$ have been evaluated first and then, the branching ratios and the 40K total half-life.

2.1 Partial half-lives

2.1.1 $T_{1/2}(\beta^-)$

Table 1: Partial measured β^- half-lives.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Partial $T_{1/2}(\beta^-)$ ($\times 10^9$ a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948Graf</td>
<td>1.48 (7)</td>
<td>Excluded by LWEIGHT (Chauvenet's criterion)</td>
</tr>
<tr>
<td>1948Hirzel</td>
<td>1.18 (19)</td>
<td></td>
</tr>
<tr>
<td>1949Stout</td>
<td>1.29 (8)</td>
<td></td>
</tr>
<tr>
<td>1950Smaller</td>
<td>1.76 (5)</td>
<td>Excluded by LWEIGHT (3σ criterion)</td>
</tr>
<tr>
<td>1951Delaney</td>
<td>1.24 (1)</td>
<td>Excluded by LWEIGHT (Chauvenet's criterion)</td>
</tr>
<tr>
<td>1951Good</td>
<td>1.46 (3)</td>
<td></td>
</tr>
<tr>
<td>1955SU38</td>
<td>1.34 (3)</td>
<td></td>
</tr>
<tr>
<td>1955KO21</td>
<td>1.36 (5)</td>
<td></td>
</tr>
<tr>
<td>1956MC20</td>
<td>1.44 (1)</td>
<td></td>
</tr>
<tr>
<td>1959KE26</td>
<td>1.46 (3)</td>
<td></td>
</tr>
<tr>
<td>1960SA31</td>
<td>1.37 (4)</td>
<td></td>
</tr>
<tr>
<td>1961GL07</td>
<td>1.400 (15)</td>
<td></td>
</tr>
<tr>
<td>1962FL05</td>
<td>1.45 (40)</td>
<td></td>
</tr>
<tr>
<td>1965BR25</td>
<td>1.36 (2)</td>
<td></td>
</tr>
<tr>
<td>1965LE15</td>
<td>1.400 (2)</td>
<td>Uncertainty increased to 6.4 $\times 10^6$ a by LWEIGHT</td>
</tr>
<tr>
<td>1966FE09</td>
<td>1.41 (2)</td>
<td></td>
</tr>
<tr>
<td>1966Egelkraut</td>
<td>1.40 (7)</td>
<td></td>
</tr>
<tr>
<td>1971Venkataramaiah</td>
<td>1.31 (6)</td>
<td></td>
</tr>
</tbody>
</table>
The statistical processing was done using the LWEIGHT program. For $T_{1/2}(\beta^-)$, the program turned up three statistical outliers: 1948Hirzel (Chauvenet’s criterion), 1950Smaller (3σ criterion), and 1951Delaney (Chauvenet’s criterion). From the resulting discrepant data set, with a reduced-χ^2 value of 2.62, a weighted average was deduced. LWEIGHT increased the uncertainty of the most precise measurement (1965LE15) from 2 to 6.4×10^6 a in order to have a maximum contribution of 50 %. The second main contribution is 1956MC20 amounting for 20 %. Finally, this evaluation leads to:

$$T_{1/2}(\beta^-) = 1.407 (7) \times 10^9$$

2.1.2 $T_{1/2}(EC, 1460$ keV)$

Table 2: Partial measured EC half-lives.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Partial $T_{1/2}(EC, 1460)$ ($\times 10^9$ a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947GL07</td>
<td>11 (2)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1948Ahrens</td>
<td>11.6 (2)</td>
<td></td>
</tr>
<tr>
<td>1950Sawyer</td>
<td>12 (1)</td>
<td></td>
</tr>
<tr>
<td>1950Graf</td>
<td>12 (2)</td>
<td></td>
</tr>
<tr>
<td>1953BU58</td>
<td>11.7 (5)</td>
<td></td>
</tr>
<tr>
<td>1955SU38</td>
<td>13.4 (2)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1955BA25</td>
<td>11.3 (5)</td>
<td></td>
</tr>
<tr>
<td>1957WE43</td>
<td>11.7 (4)</td>
<td></td>
</tr>
<tr>
<td>1960SA31</td>
<td>12.3 (6)</td>
<td></td>
</tr>
<tr>
<td>1965LE15</td>
<td>12.2 (3)</td>
<td></td>
</tr>
<tr>
<td>1966DeRuytter</td>
<td>12.2 (2)</td>
<td></td>
</tr>
<tr>
<td>1966Engelkraut</td>
<td>11.8 (5)</td>
<td></td>
</tr>
</tbody>
</table>

For the electronic capture (EC) part, all the partial half-lives, given in Table 2, were measured by detecting the 1460 keV gamma-ray in ^{40}Ar. In Table 3, a partial half-life for EC is listed, evaluated by 1956Wetherill: this evaluation used four measurements of the $^{40}\text{Ar}/^{40}\text{K}$ concentration ratio in young mica. Obviously, in this case, the total branching ratio of the $^{40}\text{K} \rightarrow ^{40}\text{Ar}$ was determined. So, this result cannot be used to evaluate the partial $T_{1/2}(EC, 1460$ keV).

The statistical processing was done using the LWEIGHT program. It turned up two statistical outliers: 1947GL07 and 1955SU38 (Chauvenet’s criterion). A weighted average was adopted from the resulting consistent data set, with a reduced-χ^2 value of 0.87. The main contributions are 30 % for 1966DeRuytter and 1948Ahrens, and 13 % for 1965LE15. Finally, this evaluation gives:

$$T_{1/2}(EC, 1460$ keV) = 11.90 (11) \times 10^9$$

2.2 Branching ratios

The branching ratios were calculated following Helmer’s method (1999BeZS). From the decay scheme:

$$P_{ec,1460} + P_{\beta^+} + P_{\beta^-} + P_{ecs} = 1.$$

In order to calculate each branching ratio, the following quantities: $P_{ec,1460}/P_{\beta^-}$, P_{β^+}/P_{β^-} and P_{ecs}/P_{β^-} must be known.

The $P_{ec,1460}/P_{\beta^-}$ ratio comes from the $T_{1/2}(\beta^-)/T_{1/2}(EC, 1460$ keV) ratio. The partial half-lives evaluated above leads to: $P_{ec,1460}/P_{\beta^-} = 0.1182 (12)$. The β^+ transition of the ^{40}K is a difficult measurement, due to a very low intensity and the pair production which comes from the 1460 keV gamma-ray of ^{40}Ar. Few experiments were able to give more than an upper limit: 1959TI20 (1.3 (7) $\times 10^{-5}$), 1962EN01 (1.12 (14) $\times 10^{-5}$) and 1965LE15 (1.5 (5) $\times 10^{-5}$). The experimental set-up of 1962EN01 minimized the pair production. Following Helmer’s choice, the most precise result is used in the present evaluation: $P_{\beta^+}/P_{\beta^-} = 1.12 (14) \times 10^{-5}$.

LNHB, INEEL/X. Mougeot, R. G. Helmer

May 09
The $P_{\text{ec,gs}}/P_{\beta^+}$ ratio was calculated theoretically by Helmer, as described hereafter. The LOGFT program cannot calculate this ratio for this unique 3rd forbidden (3U) transition. But it can calculate the theoretical value for 1U and 2U transitions. For the former (1U), this ratio is 8.51 (9) and for the latter (2U), it is 45.20 (47). Making the assumption that the 3U ratio rises by the same factor (45.20/8.51), then $P_{\text{ec,gs}}/P_{\beta^+} = 240$. Following Helmer's choice, a value of 200 (100) for $P_{\text{ec,gs}}/P_{\beta^+}$ was adopted in the present calculation.

The following branching ratios are then deduced:

$$P_{\beta^-} = 89.25 (17) \%, P_{\text{ec,1460}} = 10.55 (11) \%, P_{\text{ec,gs}} = 0.20 (10) \%, P_{\beta^+} = 0.00100 (12) \%.$$

2.3 Total 40K half-life

Table 3: Total half-lives used for the evaluation, determined from measurements and branching ratios.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of measurement</th>
<th>$T_{1/2}$ (x10^9 a)</th>
<th>Coefficient (%)</th>
<th>Total $T_{1/2}$ (x10^9 a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1931Orban</td>
<td>Partial, EC 1460</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>Not used : no uncertainty</td>
</tr>
<tr>
<td>1947GL07</td>
<td>Partial, EC 1460</td>
<td>11 (2)</td>
<td>10.55 (11)</td>
<td>1.16 (21)</td>
<td></td>
</tr>
<tr>
<td>1948Ahrens</td>
<td>Partial, EC 1460</td>
<td>11.6 (2)</td>
<td>10.55 (11)</td>
<td>1.224 (25)</td>
<td></td>
</tr>
<tr>
<td>1948Graf</td>
<td>Partial, β</td>
<td>1.48 (7)</td>
<td>89.25 (17)</td>
<td>1.32 (6)</td>
<td></td>
</tr>
<tr>
<td>1948Hirzel</td>
<td>Partial, β</td>
<td>1.18 (19)</td>
<td>89.25 (17)</td>
<td>1.05 (17)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1949Stout</td>
<td>Partial, β</td>
<td>1.29 (8)</td>
<td>89.25 (17)</td>
<td>1.15 (7)</td>
<td></td>
</tr>
<tr>
<td>1949Floyd</td>
<td>Total</td>
<td>1.54 (39)</td>
<td>100</td>
<td>1.54 (39)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1950Sawyer</td>
<td>Partial, EC 1460</td>
<td>12 (1)</td>
<td>10.55 (11)</td>
<td>1.27 (11)</td>
<td></td>
</tr>
<tr>
<td>1950Graf</td>
<td>Partial, EC 1460</td>
<td>12 (2)</td>
<td>10.55 (11)</td>
<td>1.27 (21)</td>
<td></td>
</tr>
<tr>
<td>1950Faust</td>
<td>Total</td>
<td>1.14 (10)</td>
<td>100</td>
<td>1.14 (10)</td>
<td></td>
</tr>
<tr>
<td>1950SA52</td>
<td>Total</td>
<td>1.27 (5)</td>
<td>100</td>
<td>1.27 (5)</td>
<td></td>
</tr>
<tr>
<td>1950Spiers</td>
<td>Total</td>
<td>1.18</td>
<td>-</td>
<td>-</td>
<td>Not used : no uncertainty</td>
</tr>
<tr>
<td>1950Houtermans</td>
<td>Total</td>
<td>1.31 (7)</td>
<td>100</td>
<td>1.31 (7)</td>
<td></td>
</tr>
<tr>
<td>1950Smaller</td>
<td>Partial, β</td>
<td>1.76 (5)</td>
<td>89.25 (17)</td>
<td>1.571 (45)</td>
<td>Excluded by LWEIGHT (3σ criterion)</td>
</tr>
<tr>
<td>1951Delaney</td>
<td>Partial, β</td>
<td>1.24 (1)</td>
<td>89.25 (17)</td>
<td>1.107 (9)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1951Good</td>
<td>Partial, β</td>
<td>1.46 (3)</td>
<td>89.25 (17)</td>
<td>1.303 (27)</td>
<td></td>
</tr>
<tr>
<td>1953BU58</td>
<td>Partial, EC 1460</td>
<td>11.7 (5)</td>
<td>10.55 (11)</td>
<td>1.23 (5)</td>
<td></td>
</tr>
<tr>
<td>1955SU38</td>
<td>Partial, β</td>
<td>1.34 (3)</td>
<td>89.25 (17)</td>
<td>1.271 (27)</td>
<td></td>
</tr>
<tr>
<td>1955SU38</td>
<td>Partial, EC 1460</td>
<td>13.4 (2)</td>
<td>10.55 (11)</td>
<td>1.141 (26)</td>
<td>Excluded by LWEIGHT (Chauvenet’s criterion)</td>
</tr>
<tr>
<td>1955KO21</td>
<td>Partial, β</td>
<td>1.36 (5)</td>
<td>89.25 (17)</td>
<td>1.214 (45)</td>
<td></td>
</tr>
<tr>
<td>1955BA25</td>
<td>Partial, EC 1460</td>
<td>11.3 (5)</td>
<td>10.55 (11)</td>
<td>1.19 (5)</td>
<td></td>
</tr>
<tr>
<td>1955MC20</td>
<td>Partial, β</td>
<td>1.44 (1)</td>
<td>89.25 (17)</td>
<td>1.285 (9)</td>
<td></td>
</tr>
<tr>
<td>1956Wetherill</td>
<td>Partial, EC and β^+</td>
<td>12.2 (6)</td>
<td>10.75 (15)</td>
<td>1.31 (7)</td>
<td>40Ar/40K in young mica</td>
</tr>
<tr>
<td>1957WE43</td>
<td>Partial, EC 1460</td>
<td>11.7 (4)</td>
<td>10.55 (11)</td>
<td>1.234 (44)</td>
<td>Direct measurement</td>
</tr>
<tr>
<td>1959KE26</td>
<td>Partial, β</td>
<td>1.46 (3)</td>
<td>89.25 (17)</td>
<td>1.303 (27)</td>
<td></td>
</tr>
<tr>
<td>1960SA31</td>
<td>Partial, EC 1460</td>
<td>12.3 (6)</td>
<td>10.55 (11)</td>
<td>1.30 (6)</td>
<td></td>
</tr>
<tr>
<td>1960SA31</td>
<td>Partial, β</td>
<td>1.37 (4)</td>
<td>89.25 (17)</td>
<td>1.223 (36)</td>
<td></td>
</tr>
<tr>
<td>1961GL07</td>
<td>Partial, β</td>
<td>1.400 (15)</td>
<td>89.25 (17)</td>
<td>1.249 (14)</td>
<td></td>
</tr>
<tr>
<td>1962FL05</td>
<td>Partial, β</td>
<td>1.45 (40)</td>
<td>89.25 (17)</td>
<td>1.29 (36)</td>
<td></td>
</tr>
<tr>
<td>1965BR25</td>
<td>Partial, β</td>
<td>1.36 (2)</td>
<td>89.25 (17)</td>
<td>1.214 (18)</td>
<td></td>
</tr>
<tr>
<td>1965LE15</td>
<td>Partial, EC 1460</td>
<td>12.2 (3)</td>
<td>10.55 (11)</td>
<td>1.287 (34)</td>
<td></td>
</tr>
<tr>
<td>1965LE15</td>
<td>Partial, β</td>
<td>1.400 (2)</td>
<td>89.25 (17)</td>
<td>1.2495 (30)</td>
<td></td>
</tr>
</tbody>
</table>
In order to evaluate the 40K half-life, each partial half-life was recalculated using the appropriate branching ratio. The corresponding uncertainty was also calculated.

The LWEIGHT program turned up five statistical outliers: four by Chauvenet's criterion (1948Hirzel, 1949Floyd, 1951Delaney, 1955SU38 (EC, 1460)) and one by 3σ criterion (1950Smaller). A weighted average was adopted from the resulting consistent data set, with a reduced-χ^2 value of 1.62. The data used for the evaluation of the 40K half-life can be seen in Figure 1. The two main contributions come from 1965LE15 (β) and 2004KO09, each of them amounting by 43%. The adopted value is: $T_{1/2} = 1.2504 \times 10^9$ a. Since these measurements are not all independent, the adopted uncertainty is the most precise uncertainty on measurement: 3.0×10^6 a, identical for 1965LE15 (β) and 2004KO09.

The recommended value for the 40K half-life is then: $T_{1/2} = 1.2504 (30) \times 10^9$ a, in good agreement with the evaluations by Helmer (1.265 (13) $\times 10^9$ a) (1999BeZS) and Chechev (1.258 (10) $\times 10^9$ a) (2001Chechev).

Figure 1: $T_{1/2}$ measurements used for the present evaluation, recalculated with the branching ratios. The red ones are excluded by LWEIGHT.
2.4 Electron Capture Transitions

The evaluation of the branching ratios is described in Section 2.2. That is:

\[P_{ec, 1460} = 10.55 (11) \% \] and \[P_{ec, gs} = 0.20 (10) \% \].

The \(\log \beta \) value for the 1U transition (\(^{40}K \rightarrow ^{40}Ar^{2+} \)) was computed using the LOGFT program:

\[\log \beta = 11.55 (1). \]

LOGFT cannot calculate the \(\log \beta \) value for the 3U transition (\(^{40}K \rightarrow ^{40}Ar^{gs} \)). The evaluator chose the same method used in Section 2.2 to calculate the \(P_{ec, gs}/\beta^+ \) ratio.

So, \(\log \beta (1U) = 19.51 (5) \) and \(\log \beta (2U) = 20.41 (5) \) and then, \(\log \beta (3U) = 21.35 (10) \).

The \(P_{K} \), etc. values were computed by the LOGFT program.

2.5 \(\beta^- \) Transitions

The \(\beta^- \) branching ratio is 89.25 (17) \%, as deduced in Section 2.2. The average energy is from the LOGFT program.

The \(\log \beta \) value for this 3U transition (\(^{40}K \rightarrow ^{40}Ca \)) is calculated with the same method as previously, then \(\log \beta (3U) = 20.58 (1) \).

2.6 Gamma Transitions

The internal conversion coefficients were calculated using the BrIcc program (2008KI07) for the K, L and M shells. The total internal conversion coefficient is: \(\alpha = 10.28 (15) \times 10^{-5} \).

From the theoretical tables of 1979SC31, the internal pair formation coefficient is:

\[\alpha_{\pi}(1460, E2) = 7.3 (5) \times 10^{-5} \].

So: \(\alpha_T = \alpha + \alpha_{\pi}(1460, E2) = 17.6 (5) \times 10^{-5} \)

3 Atomic Data (Ar, Z=10)

3.1 X Radiations and Auger electrons

The X-ray and Auger electron data were computed using the EMISSION program with the atomic data of Schönfeld and Janßen (1996SC06).

4 Radiation Emissions

4.1 Electron Emission

The \(\beta^+ \) and \(\beta^- \) intensities were evaluated as described above in Section 2.

4.2 Photon Emissions

No new measurement was carried out for the 1460 keV gamma-ray energy in \(^{40}Ar \) since 1998. The adopted value was evaluated by Helmer (1999BeZS): \(E_\gamma = 1460.822 (6) \) keV.

The gamma emission intensity is deduced from the electronic capture probability (see Section 2.2) and internal conversion coefficient (see Section 2.6):

\[I_\gamma(1460) = P_{EC}(1460) / [1 + \alpha_T] = 10.55 (11) / 1.000176 (5) \% \]

So we have:

\[I_\gamma(1460) = 10.55 (11) \% \]

5. References

1931Orban - G. Orban, Sitzb. Akad. Wiss. Wien Abt. Ia, 140, 121 (1931) [T\(_{1/2} \) EC]
1947GL07 - E. Gleditsch, T. Graf, Phys. Rev. 72, 640 (1947) [T\(_{1/2} \) EC]
1948Ahrens - L.H. Ahrens, R.D. Evans, Phys. Rev. 74, 279 (1948) [T\(_{1/2} \) EC]
1948Graf - T. Graf, Phys. Rev. 74, 831 (1948) [T\(_{1/2} \) \(\beta^- \)]
1948Hirzel - O. Hirzel, H. Wäffel, Phys. Rev. 74 (1948) 1553 [T\(_{1/2} \) \(\beta^- \)]
Comments on evaluation

1949Stout - R.W. Stout, Phys. Rev. 75, 1107 (1949) \([T_{1/2} \beta]\)

1949Floyd - J.J. Floyd, L.B. Borst, Phys. Rev. 75, 1106 (1949) \([T_{1/2} \text{Total}]\)

1950Sawyer - G.A. Sawyer, M.L. Wiedenbeck, Phys. Rev. 76, 1535 (1950) \([T_{1/2} \text{EC}]\)

1950Spiers - F.W. Spiers, Nature 165, 356 (1950) \([T_{1/2} \text{Total}]\)

1950Faust - W.R. Faust, Phys. Rev. 78, 624 (1950) \([T_{1/2} \text{Total}]\)

1950AS52 - G.A. Sawyer, M.L. Wiedenbeck, Phys. Rev. 79, 490 (1950) \([T_{1/2} \text{Total}]\)

1950Houtermans - F.G. Houtermans, O. Haxel, J. Heintze, Z. Physik 128, 657 (1950) \([T_{1/2} \text{Total}]\)

1950Smaller - B. Smaller, J. May, M. Freedman, Phys. Rev. 79, 940 (1950) \([T_{1/2} \beta]\)

1951Delanev - C.F.G. Delaney, Phys. Rev. 81, 158 (1951) \([T_{1/2} \beta]\)

1951Good - M.L. Good, Phys. Rev. 81, 891 (1951) \([T_{1/2} \beta]\)

1953BU58 - P.R. J. Burch, Nature 172, 361 (1953) \([T_{1/2} \text{EC}]\)

1955KO24 - S. Kono, J. Phys. Soc. Japan 10, 495 (1955) \([T_{1/2} \beta]\)

1955BA25 - G. Backenstoss, K. Goebel, Z. Naturforsch. 10a, 920 (1955) \([T_{1/2} \text{EC}]\)

1955MC20 - A. McNairn, R.R. Grover, H. W. Wilson, Phil. Mag. 1, 199 (1956) \([T_{1/2} \beta]\)

1957WE43 - G.W. Wetherill, Science 126, 545 (1957) \([T_{1/2} \text{EC}]\)

1959KE26 - W.H. Kelly, G.B. Beard, R.A. Peters, Nucl. Phys. 11, 492 (1959) \([T_{1/2} \beta]\)

1959T120 - D.R. Tilley, L. Madansky, Phys. Rev. 116 (1959) 413 \([\beta^+/\beta^- \text{ ratio}]\)

1961GL07 - L.E. Glendenin, Ann. N.Y. Acad. Sci. 91, 166 (1961) \([T_{1/2} \beta]\)

1962FL05 - D.G. Fleishman, V.V. Glazunov, Sov. At. En. 12, 338 (1962) \([T_{1/2} \beta]\)

1965LE15 - H. Leutz, G. Schulz, H. Wenninger, Z. Phys. 187, 151 (1965) \([T_{1/2} \beta, \text{EC}, \beta^+/- \beta^- \text{ ratio}]\)

1966Egelkraut - K. Egelkraut, H. Leutz, Physik Verhandl. 11, 67 (1966) \([T_{1/2} \beta, \text{EC}]\)

1971Venkataramai - P. Venkataramai, H. Sanjeevaiah, B. Sanjeevaiah, Ind. J. Pure Appl. Phys. 9, 133 (1971) \([T_{1/2} \beta]\)

1972Gopal - K. Gopal, H. Sanjeevaiah, B. Sanjeevaiah, Am. J. Phys. 40, 721 (1972) \([T_{1/2} \beta]\)

1979SC31 - P. Schloter, G. Soft, At. Data Nucl. Data Tables 24 (1979) 509 \([\text{E}_q]\)

2001Chechev - V.P. Chechev, IAEA report (2001) INDC(CCP)-432 \([T_{1/2}]\)

