This evaluation was done in December 2010 with a literature cut-off by the same date.

1. DECAY SCHEME

215At decays 100% to levels of 211Bi by emission of α particles. The adopted 211Bi levels populated in the 215At decay are based on the experiment of 1966Gr07 and the evaluation by Browne (2004Br45).

The decay scheme of 215At seems to be incomplete as the alpha decays to higher levels in daughter 211Bi, which are known from the β^- decay of 211Pb (see 211Bi Adopted Levels, Gammas of 2004Br45), are not observed yet.

The current evaluated data are supported by the agreement between $Q(\text{calculated}) = 8178$ (5) keV, deduced from the calculated average energies of all emissions, and $Q(\alpha) = 8178$ (4) keV, adopted from 2003Au03.

2. NUCLEAR DATA

$Q(\alpha)$ is from 2003Au03 where this value has been deduced from the measurement of α-particle energy $E(\alpha_0,0) = 8026$ (4) keV by 1982Bo04 recommended in 1991Ry01.

The 215At half-life of 0.10 (2) ms is from the single measurement of 1951Me10.

2.1. Alpha Transitions

The alpha transition energies have been obtained from the $Q(\alpha)$ value and 211Bi level energies given in Table 1 from 211Bi Adopted Levels, Gammas of 2004Br45.

<table>
<thead>
<tr>
<th>Level</th>
<th>Energy (keV)</th>
<th>Spin and parity</th>
<th>Half-life</th>
<th>Probability of α-transition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>9/2−</td>
<td>2.14 (2) min</td>
<td>99.95 (2)</td>
</tr>
<tr>
<td>1</td>
<td>404.854 (9)</td>
<td>7/2−</td>
<td>0.317 (11) ns</td>
<td>0.05 (2)</td>
</tr>
</tbody>
</table>

The alpha transition probability $P(\alpha_{0,1})$ is from the measurement of 1966Gr07 by means of $\alpha-\gamma$ coincidence technique with surface-barrier semi-conductor and NaI(Tl) detectors. The accurate $P(\alpha_{0,0})$ value has been deduced from the expression of $P(\alpha_{0,0}) + P(\alpha_{0,1}) = 100\%$.

The α decay hindrance factors have been calculated using the ALPHAD computer program from the ENSDF evaluation package with r_0 (211Pb) = 1.5443 fm (2004Br45).

2.2. Gamma Transitions and Internal Conversion Coefficients

The 405-keV gamma-ray transition probability has been deduced from the intensity balance at the 405-keV level using the adopted alpha transition probability $P(\alpha_{0,1})$ and total internal conversion coefficient (ICC) α_T for $\gamma_{1,0}$ (405 keV). The multipolarity (M1+E2) and E2/M1 mixing ratio (δ) of -1.1 (1) have been taken from 2004Br45. These are based on the measurements of conversion electrons in 211Pb β^- decay and $\gamma(\theta)$ measurements with polarized 211Bi nuclei. ICCs α_T, α_K, α_L, α_M have been interpolated using the BrIcc computer program, version v2.2a, data set BrIccFO (2008Ki07).
3. ATOMIC DATA
The fluorescence yields, X-ray energies and relative probabilities, and Auger electrons energies and relative probabilities are from the SAISINUC software.

4. ALPHA EMISSIONS
The energy of alpha-particle group $\alpha_{0,0}$ that populates the 211Bi ground state is the measured value from 1982Bo04 recommended in 1991Ry01. In 1966Gr07 the measured value of 8.00 (1) MeV was reported.

The energy of alpha-particle group $\alpha_{0,1}$ of 7628 (4) keV has been deduced from the Q(\alpha) value taking into account the level energy of 404.854 (9) keV and the recoil energy for 211Bi. The above value of E(\alpha_{0,1}) can be compared to the value of 7626 (15) keV as measured by 1966Gr07 and adjusted by the evaluator to the adopted E(\alpha_{0,0}) = 8026 (4) keV (the original value of 1966Gr07 is 7.60 (1) MeV).

The earlier measured energy of α–emission in the decay of 215At is 8.00 (2) MeV (1951Me10).

5. ELECTRON EMISSIONS
The energies of the conversion electrons for $\gamma_{1,0}$ (405 keV) have been obtained from the gamma-ray transition energy and the atomic electron binding energies.

The emission probabilities of the conversion electrons have been deduced using the P$_{\gamma}$ and ICC values.

The absolute emission probabilities of K and L Auger electrons have been calculated using the EMISSION computer program.

6. PHOTON EMISSIONS
6.1 X - Ray emissions
The absolute emission probabilities of Pb KX- and LX-rays were calculated using the EMISSION computer program.

6.2. Gamma emissions
6.2.1. Gamma ray energies
The 405-keV gamma-ray energy has been adopted from the 405-keV level energy. In 1966Gr07 this energy was obtained from the 215At α decay as \approx 404 keV.

6.2.2. Gamma ray emission probabilities
The 405-keV gamma-ray emission probability has been deduced from the alpha transition probability P($\alpha_{0,1}$) = 0.05 (2) % and total internal conversion coefficient α_T = 0.122 (8).

7. REFERENCES
1951Me10 W.W. Meinke, A. Ghiorso, G.T. Seaborg, Phys. Rev. 81, 782 (1951) (Half-life, energy of α -emission)
1991Ry01 A. Rytz, At. Data Nucl. Data Tables 47, 205 (1991) (α -particle energies and emission probabilities)
2004Br45 E. Browne, Nucl. Data Sheets 103, 183 (2004) (215At α decay scheme, 211Bi levels)